Inhalt anspringen

A Transformer-Based Pipeline for German Clinical Document De-Identification

Journalartikel

Schnelle Fakten

  • Weitere Publizierende

    Kamyar Arzideh, Giulia Baldini, Philipp Winnekens, Felix Nensa, Master of Science Ahmad Idrissi-Yaghir, René Hosch

  • Veröffentlichung

    • Thieme (Stuttgart) 2025
  • Publikationszweck

  • Organisationseinheit

  • Fachgebiete

    • Allgemeinmedizin
    • Computer- und Kommunikationstechniken
  • Forschungsstrukturen

    • Medizinische Informatik (MI)
  • Forschungsfeld

    • Künstliche Intelligenz und Big Data

Zitat

K. Arzideh, G. Baldini, P. Winnekens, C. M. Friedrich, F. Nensa, A. Idrissi-Yaghir, and R. Hosch, “A Transformer-Based Pipeline for German Clinical Document De-Identification,” Applied Clinical Informatics, vol. 16, no. 1, pp. 31–43, 2025.

Abstract

Objective: Commercially available large language models such as Chat Generative Pre-Trained Transformer (ChatGPT) cannot be applied to real patient data for data protection reasons. At the same time, de-identification of clinical unstructured data is a tedious and time-consuming task when done manually. Since transformer models can efficiently process and analyze large amounts of text data, our study aims to explore the impact of a large training dataset on the performance of this task.

Methods: We utilized a substantial dataset of 10,240 German hospital documents from 1,130 patients, created as part of the investigating hospital's routine documentation, as training data. Our approach involved fine-tuning and training an ensemble of two transformer-based language models simultaneously to identify sensitive data within our documents. Annotation Guidelines with specific annotation categories and types were created for annotator training.

Results: Performance evaluation on a test dataset of 100 manually annotated documents revealed that our fine-tuned German ELECTRA (gELECTRA) model achieved an F1 macro average score of 0.95, surpassing human annotators who scored 0.93.

Conclusion: We trained and evaluated transformer models to detect sensitive information in German real-world pathology reports and progress notes. By defining an annotation scheme tailored to the documents of the investigating hospital and creating annotation guidelines for staff training, a further experimental study was conducted to compare the models with humans. These results showed that the best-performing model achieved better overall results than two experienced annotators who manually labeled 100 clinical documents.

Referenzen

DOI 10.1055/a-2424-1989

Erläuterungen und Hinweise

Diese Seite verwendet Cookies, um die Funktionalität der Webseite zu gewährleisten und statistische Daten zu erheben. Sie können der statistischen Erhebung über die Datenschutzeinstellungen widersprechen (Opt-Out).

Einstellungen (Öffnet in einem neuen Tab)