Jump to content

Signal-to-noise ratio is more important than sampling rate in beat-to-beat interval estimation from optical sensors

Fast facts

  • Further publishers

    • Sebastian Zaunseder
    • Antti Vehkaoja
    • Christoph Hoog Antink
  • Publishment

    • 2022
  • Anthology

    Signal-to-noise ratio is more important than sampling rate in beat-to-beat interval estimation from optical sensors (74)

  • Journal

    Biomedical Signal Processing and Control,Biomedical Signal Processing and Control

  • Organizational unit

  • Subjects

    • Biomedical technology
  • Research fields

    • BioMedicalTechnology (BMT)
  • Publication format

    Journal article (Article)

Quote

Zaunseder, Sebastian et al. 2022. signal-to-noise ratio is more important than sampling rate in beat-to-beat interval estimation from optical sensors. Biomedical Signal Processing and Control 74, .

Content

Photoplethysmographic Imaging (PPGI) allows the determination of pulse rate variability from sequential beat- to-beat intervals (BBI) and pulse wave velocity from spatially resolved recorded pulse waves. In either case, sufficient temporal accuracy is essential. The presented work investigates the temporal accuracy of BBI estimation from photoplethysmographic signals.
Within comprehensive numerical simulation, we systematically assess the impact of sampling rate, signal-to-noise ratio (SNR), and beat-to-beat shape variations on the root mean square error (RMSE) between real and estimated BBI. Our results show that at sampling rates beyond 14 Hz only small errors exist when interpolation is used. For example, the average RMSE is 3 ms for a sampling rate of 14 Hz and an SNR of 18 dB. Further increasing the sampling rate only results in marginal improvements, e.g. more than tripling the sampling rate to 50 Hz reduces the error by approx. 14%. The most important finding relates to the SNR, which is shown to have a much stronger influence on the error than the sampling rate. For example, increasing the SNR from 18 dB to 24 dB at 14 Hz sampling rate reduced the error by almost 50% to 1.5 ms. Subtle beat-to-beat shape variations, moreover, increase the error decisively by up to 800%. Our results are highly relevant in three regards: first, they partially explain different results in the literature on minimum sampling rates. Second, they emphasize the importance to consider SNR and possibly shape variation in investigations on the minimal sampling rate. Third, they underline the importance of appropriate processing techniques to increase SNR. Importantly, though our motivation is PPGI, the presented work immediately applies to contact PPG and PPG in other settings such as wearables. To enable further investigations, we make the scripts used in modeling and simulation freely available.

Notes and references

This site uses cookies to ensure the functionality of the website and to collect statistical data. You can object to the statistical collection via the data protection settings (opt-out).

Settings(Opens in a new tab)